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Abstract. Important thermodynamic heat engine cycles can be regarded a s  special cases 
of a more universal ‘generalised’ cycle. For specific choices of a continuously variable 
parameter, this generalised cycle reduces to the Carnot, Otto, Joule-Brayton, Diesel and 
other known cycles. Of particular interest is the thermal efficiency when characteristic 
temperatures between the highest and lowest operating temperatures ( T ,  and T-)  are 
chosen to maximise the work output per cycle. This maximum-work efficiency is found 
to be equal to, or to be well approximated by, the Curzon-Ahlborn efficiency, vcA= 
1 - (T - /  T+)”’ for a broad spectrum of cycles and temperatures. The generalised cycle, 
characterised by two adiabatics and two heat transfer paths with constant heat capacities, 
sheds light on this remarkable and important, but largely unknown, property. 

1. Introduction 

The study of heat engines is central to the development and understanding of thermo- 
dynamics. One of the most commonly used corollaries of the second law of thermo- 
dynamics is Carnot’s principle: a reversible Carnot cycle, operating between fixed 
reservoir temperatures T+ and T- < T,, has the highest thermal efficiency 

rlC=I-T-/T+ (1.1) 

possible for such operation. Reversible cycles, such as the Otto, Diesel and Joule- 
Brayton cycles (see, e.g., [l]), serve as models for real heat engines. Historically, these 
cycles have been examined separately, their most obvious common feature being that 
their efficiencies do not exceed r lC .  

Recently, several reversible heat engines were examined under conditions of 
maximum work production per cycle [ 2 ] .  Surprisingly, it was found that they share 
the property that their maximum-work efficiencies are all either equal to or well 
approximated by 

TCA = 1 - (T- /  T+)”’ 

where T+ and T- are the maximum and minimum cycle temperatures. This efficiency 
applies also to the Curzon-Ahlborn irreversible heat engine operating between reser- 
voirs at temperatures T- and T+ under maximum power conditions, and obeying a 
linear heat transfer law [3]. 
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The remarkable 'near-universality' of T~~ is the impetus for studying a generalised 
cycle that encompasses all those noted above. This study is not unduly academic, for 
first- and second-law efficiencies of power plants are reasonably consistent wtih (1.2) 
[3,4]. The universal nature of rtCA is an  important new finding in the old subject of 
thermodynamics. The present study is intended to elaborate upon it, illustrating the 
extent to which the maximum-work efficiency is well approximated by (1.2) for a broad 
spectrum of cycles and  temperatures. 

2. A thermodynamic cycle with interesting properties 

Consider a reversible cycle consisting of two adiabatics and two segements with constant 
heat capacity C > 0 of the working fluid, as depicted in figure 1. The maximum and 
minimum cycle temperatures are T+ and T-. Along the heating and cooling segments, 
the temperature varies from T to T+ and from T' to T- ,  respectively. The heat transfers 
to the fluid, which are accomplished via an  appropriate sequence of heat reservoirs, are 

Qin=C(T+- T ) a O  ( 2 . 1 ~ )  

Q,,, = C( T- - T ' )  S 0. (2.lb) 

The adjustable temperatures T and T' are coupled because the fluid's entropy change 
per cycle is zero, i.e. AS = C[ln( T+/ T )  + In( T-/ T ' ) ]  = 0 or 

T' = T- T+/ T. (2.2) 

The work done per cycle is 

W = Qin + Qo,, = C ( T+ - T + T- - T- T+/ T ) .  (2.3) 

What values T* of T and TI" of 7' maximise W for fixed T+ and T- ? Defining 
r = T-/ T+, the maximum work W* is obtained when 

T* = TI* = ( T - T + ) ~ ' ~  = ~ + ? 1 / 2  (2.4) 

whence 

W" = CT+( 1 - T"*)' 

Qi", = CT+( 1 - 7'") 

Figure 1. Temperature-entropy diagram of a reversible cyle with two adiabatic (constant 
entropy) segments and two paths with equal constant heat capacities, C,, = CO,, = C > 0. 
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and 

This maximum-work approach is clearly a rather simple way of obtaining qCA. 
In general, the efficiency 7 = W /  Qi, depends on T- ,  T+ and T, and is 

C ( T+ - T) ( 1 - T-/ T )  
= 1 - ( Tf- /  T )  r 

C ( T + -  T )  r l =  

whence 

If one now defines a ‘reduced’ heat input q and a ‘reduced’ efficiency e via 

Qi n 

C (  T+ - T-)  
q z  

r l r l  e=-=- 
77, 1 - 7  

one finds, using (2.1) and (2.9), that 

( 2 . 1 0 ~ )  

(2.1 Ob) 

(2.1 1) 

This relation is shown in figure 2 for T = 0.1, 0.3 and 0.9. 
Examination of (2.1), (2.3) and (2.8) shows that q = 0 at e = 1, which corresponds 

to T = T+ and W = 0; and q = 1 at e = 0, which occurs when T = T- and W = 0. Between 
these two zeros of W there must lie a maximum. Using (2.7) to obtain e*,  one finds 

e 

(2.12) 

Figure 2. The reduced heat input ( 2 . 1 0 ~ )  plotted against the reduced efficiency (2.10b). 
Three curves are shown, corresponding to T = 0.1, 0.3 and 0.9. In each case, the reduced 
efficiency at maximum work is shown by the appropriate side ofthe maximum-area inscribed 
rectangle (which turns out to be a square). 
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Therefore, on the q - e  diagram the maximum-work point lies at ( e * ,  q*)  with q* = e*. 
The line from 0 at 45" intersects the curve at the maximum-work point. The rectangular 
areas (for 7 = 0.1, 0.3, 0.9) shown in figure 2 each have the value 

- (1 + 7 " 2 ) - 2  ( e * ) *  =-- W* 
CT+TC 

(2.13) 

which is proportional to the maximum work output, W*. 
The q-e diagram, with the appropriate inscribed rectangle representing the 

maximum work output, is familar from solar cell analyses where one uses a current- 
voltage relation, and the product of the two coordinates represents power. This heat 
current-efficiency representation follows an  idea used for endoreversible heat engines 
by de  Vos [ 5 ] .  

The cycle described here corresponds to the Otto cycle if C = C, and to the 
Joule-Brayton cycle if C = C, [2]. The properties represented in (2.7) and figure 2 
make this cycle elegant and  interesting. The generalised cycle introduced in the next 
section shares these features, and  underscores the importance of T ~ ~ .  

3. Generalisations 

Consider now a generalisation in which the heat capacities along the heat transfer 
paths are still constants, called Ci, and CO,,, but with no restriction on their relative 
magnitudes or  algebraic signs?. Equations ( 2 . 1 ~ )  and (2.lb) are then replaced by 

Qin = I Cinl(T+- T)  2 0  ( 3 . 1 ~ )  

Qout = I Gout/( T- - T') 0. (3.16) 

For the special case where 1 Cinl = 1 CoUtI = C, the cycles in figures 3( a) - (  c) also become 
possible, and  the analysis in § 2 is still valid. For any path (labelled h )  with heat 
capacity C,, d T l d S =  T I C h ,  and  hence the paths shown in figure 3 with d T / d S < O  
have negative heat capacities. Notice that (2.2) implies that the variable temperatures, 
T and T', in figures 1 and  3(a)-(c) can range from T- to T+. 

Figure 3. Temperature-entropy diagram of three reversible cycles that are generalisations 
of the cycle in figure 1: ( a )  C,,=C,,,<O; (6)  C,,>O, C,,,<O, with ~ C , n ~ = ~ C o u , ~ ;  ( c )  
C,,<O, Cou,>O, with l ~ , n l = l ~ o u , l .  

t Although it is not widely appreciated, negative heat capacities are common along certain types of paths; 
e.g. an ideal gas has negative heat capacity along so-called polytropic paths described by pV" =constant, 
with l < n < y - C , , / C , .  See [ 6 ] .  
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More generally, lCinl and  lCoutl are not necessarily equal, and a new analysis, 
paralleling that in § 2 ,  is needed. The ratio parameter 

e > o  
is helpful in categorising the generalised cycles. Table 1 lists four well known special 
cases, for which the heat capacities are defined to be positive, and gives the 0 value 
for each. 

Analysis of the generalised cycle with arbitrary positive e is straightforward. Key 
results, which are extensions of the equations in § 2 ,  are summarised in table 2 ,  and 
results for several interesting limiting values of e are tabulated in table 3. The extension 
of ( 2 . 2 )  in table 2 has the consequence that either T or T' is restricted to a subset of 
[ T- ,  T,] when 0 # 1. This is shown clearly in the plot of T' against T for five values 

Table 1. Parameter choices for common reversible heat engine cycles. 

Cycle Q,, segment Q,,, segment C, ,  CO,, 0 

Otto isochore isochore c, C" 1 
Joule-Brayton isobar isobar C P  CP 1 
Diesel" isobar isochore C P  c, Y 
Atkinson" isochore isobar c, CP Y-l 

'I For a dilute diatomic gas working fluid, y = Cp/C, =?/$= 1.40 and y-l = 0.71; for poly- 
atomic gases, y =$/$= 1.33 and y-' = 0.75. 

Table 2. Generalisations of equations from § 2 for @ # 1". 

Equation 
number Generalisation 

" r T-/ T+ 

Table 3. V *  for various choices of 0.'. 

Comment 

1 1 - Otto, Joule-Brayton, and Curzon-Ahlborn cycles [2,3]  
0 l + r ( l - r ) - ' l n ( r )  Finite heat source and infinite sink [7,8]  
CO 1 + (1 - T ) / h (  7 )  Finite heat sink and infinite source [7]. 

Atkinson cycle with ideal gas working fluid [2] 

Diesel cycle with ideal gas working fluid [2] 

1/Y 1 + ( r -  + ) / [ ( I  - f ) ( l -  r ' ) ]  f = y l ( l + y ) ;  c,,=c,; c,,,=c, 

Y l + f ( r - ~ ' ) / [ ( l - f ) ( l - T ' ) l  f- 1/(1+ Y ) ;  e,,, = c,; CO,, = c, 

r -  T-/T+ and y -  Cp/C, 
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of 8 between 0.2 and 10 in figure 4. When 0 > 1, T > Tmi, > T- ; when 0 < 1, T‘ < TLaX < 
T,. The temperatures Tmi, and TLax depend upon 8. Only for the special case e = 1 
can both T and T’ span the full interval [ T-, T+]T. 

The reason for the limited range of T is illustrated for the special case 8 >  1 and 
Ci, > CO,, > 0 in figure 5 .  As the intermediate temperature T in figure 5 ( a )  is reduced, 
T’ must increase. T‘ reaches T+ (figure 5(  b ) )  before T has reached T- because Ci, > CO,, 
implies that (dT/dS)o, ,>(dT/dS)i , .  Hence, T cannot get smaller than its value in 
figure 5 ( b ) .  Similar illustrative graphs can be made for other choices of Ci, and CO,,.  

The restricted ranges of T or T’ when 8 f 1 limit the range of possible thermal 
efficiencies for these generalised cycles. This is illustrated in figure 6, which shows the 
reduced heat input q Qin/ I Ci,l ( T+ - T-) as a function of the reduced efficiency e for 
five values of 8 when ~ = 0 . 3 .  For 8 = 1, the curve is identical to the curve for T =0.3 
in figure 2. For any 8, the Carnot reduced efficiency of unity is possible in the limit 
of zero heat input, which of course, results in zero work output. In this limit, the two 
adiabatics approach one another, and the generalised cycle with any value of 8 
effectively becomes a Carnot cycle. 

Figure 4. T’ plotted against T, as given in the 
generalisation of (2.2), table 2. Curves are shown 
for 0 = 0.2,0.5,1,2,5 and 10, with T and T‘restricted 
to ( T - ,  T,). The broken line is T’= T. 

T. T. 
T 

5 

Figure 5. Temperature-entropy diagram of a reversible cycle with C,, > CO,, > 0; i.e. 
.9=IC,,I/ICoU,1>0,fortwodifferentchoicesof T a n d  T’: ( a )  T-<T,,,(B)< T < T ’ < T + ;  
( b )  T =  rm,”(e)< T’= r,. 

+When the heat capacities along the upper and lower branches have opposite algebraic signs, those two 
branches intersect when 71 T’ ,  giving double-looped cycles. These are relatively inefficient, and are of 
academic interest only. 
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e 

Figure 6. The reduced heat input 4 plotted against reduced efficiency e for 6' = 0.5, 1, 2, 
5 and 10, with 7 = 0.3. The short-dashed curve is q ( e * (  e ) ) ,  for 0 < 6 < cc. The fact that it 
is nearly vertical indicates that e* varies relatively little under large changes in 6. The 
long-dashed curve is 4 ( e - )  where e- (a function of 6') is the minimum possible reduced 
efficiency. For 6' > 1 this non-zero minimum occurs because T has a minimum above T- ; 
for 6' < 1 it occurs because T' is restricted to values below T,. The restrictions on T and 
T' are evident in figure 4. When 6' = 1, both T and T' can vary from T-  to T+ and the 
minimum efficiency e- = 0. 

4. Near-universality 

The most interesting feature of the generalised cycle is the degree to which its maximum- 
work efficiency v*(8, 7) (table 3) is well approximated by the Curzon-Ahlborn 
efficiency, qca, for a broad spectrum of 8 and 7 values. This is illustrated graphically 
in figure 6 by the large slope of q ( e " ( # ) ) ,  the locus of maximum-work points. 
Specifically, as shown in figure 7, the difference between T *  and qCA never exceeds 14%. 

- 1 s t  

Figure 7. Percent difference, P D ( T ) =  l O O x [ ~ * ( . r ,  6 ' ) - r ) * ( 7 ;  1 ) ] / ~ * ( 7 ,  11, plotted against 
T. Curves are shown for @-to ,  0.3, 1, 6 and E .  The magnitude of PD(T) is under 14% for 
o C T < E .  
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